
Doctoral Symposium in Informatics Engineering, p. 1, 2014.
© Springer-Verlag Berlin Heidelberg 2011

Towards an Industrial Agent Oriented Approach

João Reis 1

1 Faculty of Engineering of the University of Porto. Rua Dr. Roberto Frias, s/n, 4200-465,
Porto, Portugal

jpcreis@fe.up.pt

Abstract. The agent paradigm is being strongly discussed for the past few years,
mainly when addressed to practical and real world issues. The industry domain,
and specifically the production system context, has revealed to be suitable for the
use of Multi-Agent Systems, and along with it, some artificial intelligence con-
cepts applied to process optimization [1]. The approach presented in this paper
makes use of the equipment representation by means of the agent concept, and
markup languages for document encoding as XML to create simulated environ-
ment for the study of shop-floor dynamics, and the reliability and effectiveness
in using this kind of paradigm in production system. The present approach aims
for the optimization in specific stages of the production system, like product
ramp-up, scheduled maintenance and unscheduled maintenance. These different
phases reveal to be very time consuming and costly, and thus, task driven com-
munication, negotiation strategies and the agent concept can actually open a door
towards a whole new holistic perspective about information system and shop-
floor interactions. In this paper, a simple welding scenario is presented looking
forward to foster and leverage the use of, firstly, Multi-Agent System concept
within the industrial domain, and secondly, negotiation strategies to solve and
handle conflict issues.

Keywords: Multi-agent System, Agent Negotiation, Agent Collaboration,
Modelling, Production Systems, Manufacturing Execution System

1 Introduction

Situations like absence of equipment visibility at the shop-floor level, non-existing in-
ter-equipment communication and lack of collaborative capabilities are just few chal-
lenges that nowadays European Industry have to deal with. Most of the times, these
kind of problems lead not only to inefficiencies in the very early stages of the produc-
tion system, which involves the product ramp-up – since the production is initiated,
some equipment need to be calibrated until some quality parameter is not met - , but
also when equipment requires maintenance. In this latter case, there are two different

situations that can be observed. On one hand, a problem in a certain equipment is iden-
tified but it can still operate at the shop-floor level, and maintenance can be schedule in
further future. On the other hand, if a severe problem occur, an equipment might require
an immediate maintenance forcing all the production system to stop. All these different
problems represent the nowadays challenges that need to be tackled in order to mini-
mize production costs, and maximize the product outcome, and consequently improve
the competitiveness on the industry world.

The purpose of this paper is expose an agent oriented approach applied to the
industry domain, in which a simple Welding scenario is explored. This agent approach
aims to create a representation of each equipment on the shop-floor level using the
agent paradigm, in which each agent is an extension of the communication and pro-
cessing capabilities of each machine. Therefore, collaboration and negotiation strate-
gies were explored in order to tackle shop-floor workflow optimization issues, like
which equipment should be used for a specific required task and provide the best quality
results.

The main goal of this approach is to explore and study the use of Intelligent
Agent paradigm applied to the Industry domain. It aims to replicate the shop-floor
equipment along with its dynamics and interactions and to explore the possibility of
using this paradigm in a real industrial environment. To do so, the JADE platform was
used to model the all the production system equipment, from the lower capacity devices
like a temperature or humidity sensor, to the Manufacturing Execution System used to
plan and coordinate the whole shop-floor. Taking advantage of the JADE functionali-
ties, the Contract-Net protocol along with specific behaviors were used to model the
agents’ interaction and the dynamics associated with the industry environment [2].

In this paper, an agent approach is explored to deal and face some of the nowa-
days industrial challenges. Section 2 reviews some of the work that have been made in
field, and constituted a very good basis for this approach exploitation. Section 3 pre-
sents in detail and explains the proposed agent based approach. Section 4 shows some
experimental results taking into account a simple Welding scenario, in which a set of
sensors and a welding machine are used. In Section 5, a discussion is raised upon pre-
vious experimental results, concluding with few remarks and future work possibilities.

2 Related Work

This this section will presented two different framework that aim to apply the agent
paradigm into the industry domain, in terms of reconfiguration and agility of the man-
ufacturing systems.

The first one is named MetaMorph II, and is an agent based architecture that aims to
integrate different manufacturing activities like design phase, planning scheduling, etc,
that allow the system reconfiguration. This architecture is oriented to distributed intel-
ligent design and manufacturing that takes into account entities like suppliers, custom-
ers and partners for extended-enterprise issues [3]. However, this architecture is more
oriented to the system adaptability rather than system configuration and reconfiguration
[4].

The second one is called AARIA (Autonomous Agents for Rock Island Arsenal),
and is an agent architecture that is mostly concerned about the systems’ design. This
way, it is composed by collaboration models that are requirement driven, rather than
using the collaboration capabilities for designing and specifying the system [5].

3 Agent Oriented Approach

3.1 Industrial Overview

As previously said, one of the purposes of this approach is to have an agent represen-
tation for each equipment on the shop-floor. To correctly understand the meaning of
each agent, we need to previously be aware, in a simplified way, of the industrial pan-
orama on two different stages of importance: common information system oriented to
the industrial domain that aims to set up the shop-floor configuration and plan the work-
flow according to the product specifications, called Manufacturing Execution System
(MES); the different types of equipment that can compose a shop-floor production sys-
tem. The first one aims to manage and control all the shop-floor equipment, like receiv-
ing the product specifications and translate them into tasks that can be delegated among
all the available equipment on the shop-floor level. The second one is directly related
to the machines that are displaced throughout the shop-floor. In this latter, two different
types of equipment were identified: high capacity devices and lower capacity devices.
The high capacity devices are equipment with high capabilities of processing and
memory that can control other high capacity devices or different sensors and actuators.
The lower capacity devices are just sensors and actuators that need to be controlled by
another entity, due to the lack of processing and memory.

3.2 Agents’ Description

For a better understanding of this approach’s purpose, the concept of agent needs to be
explained and clarified. The definition of agent varies in ranges of context, assuming
different functions and purposes in areas like philosophy, sociology, economy, law, and
others. Despite those contexts, the definition that seems to be more suitable for the
industry domain, lies in the following: “A computer system that is situated in some
environment and that is capable of autonomous action in this environment in order to
meet its design objective” [6]. An agent should have the a sense of autonomy, acting
independently from human intervention, should have the ability to interact with other
agents and the environment, react to the environment changes and percept from it, as-
sume a pro-active posture in acting by its will, and should be continuous running pro-
cess.

Taking into account the Industrial Overview presented in the previous subsection,
the was mainly influenced and inspired by the I-RAMP3 project, a set of agents was
identified to fulfil the intended representation of the industrial environment: Device
Agent, Sensor & Actuator Agent, and MES Agent. The Device Agent is a direct corre-

spondence of high capacity devices and it aims to replicate the behavior of the equip-
ment that have the high processing and memory capabilities, and is intended to control
/ manage other Device Agents or Sensor & Actuator Agents.

Sensor & Actuator Agent is the representation of the sensors and actuators that exist
on the shop-floor. Since these kind of equipment are lower capacity devices, to operate
on the production system, they need to be controlled / managed by Device Agents or
the MES Agent.

Finally, the MES Agent is intended to partially replicate the behavior of the Manu-
facturing Execution System. This partiality is based on the equipment shop-floor plan-
ning, in which tasks are delegated to Device and Sensor & Actuator Agents to execute
according to its specification.

3.3 Agents’ Interaction

One of the things that is inherent to a Multi-Agent System is the interaction among all
the agents. This way, a very well-structured communication needs to be specified in
order to guarantee a correct interpretation of what each equipment is capable to operate
on the shop-floor level, all the tasks that needs to be delegated and executed, and even
additional functionalities that can be independent from the physical execution, like a
service that provides a machine’s information on a given period. Therefore a set of
eXtensible Markup Language (XML) documents was developed to fulfil all the com-
munication needs to promote the most reliable interaction between agents. The XML
format was chosen because it is both machine-readable and human-readable, is a very
well accepted standard for encoding documents [7] and there are several tools that can
translate the information present on a class model into an XML-based file, and the other
way around. Hence, the following set of documents were defined: Self-Description
Document (SDD); Task Description Document (TDD); Task Fulfilment Document
(TFD) [8].

Self-Description Document.
The Self-Description Document aims to be sent to all the system entities (MES Agent,
Device Agent, Sensor & Actuator Agent) when an agent enters the network of devices
and is the basis for all the other documents to be exchanged during the agents’ interac-
tion, since it describes the equipment basic information and all the tasks that can be
executed.

Task Description Document.
The Task Description Document is intended to be sent from both MES Agent and De-
vice Agent when a task needs to be delegated. On the other hand, all the agents can
receive this kind of document, despite the MES Agent because it is the one who delegate
tasks in the first place.

This document is generated by the agent that wants to delegate a task to other
agent and it is a particular case of the Self-Description Document, since it only concerns

about the task parameterization, with the addition of when the task will start, and how
long it will take.

Task Fulfilment Document.
The Task Fulfilment Document is the response to the Task Description Document and
is an exact copy of it, with the updated values from the responder taking into account
the worst case scenario, meaning that the update will only occur when the task execu-
tion on the shop-floor, according to the SDD, is different from what was initially re-
quired.

3.4 Agent Negotiation

When coordination and collaboration is intended to make part of the agents’ dynamics
in a Multi-Agent System, negotiation strategies need to be considered. The purpose of
Negotiation in this specific approach is related with agent’s cooperation to meet local
and global goals, in which agents must act as a group and decide who executes what
according to cost and utility functions.
 In this case, it was used the Contract-Net Negotiation protocol to deal with
resource allocation conflicts. Simply describing it, the Contract-Net protocol always
need as least two different entities: the ContractNetInitiator and Contract-
NetResponder. The first step of the protocol is made by the Initiator, sending a Call for
Proposal (CFP) message to the Responder, in order for the latter to provide a Proposal
according to what was specified previously on the proposal call. Finally the Initiator
has the main role to analyze the proposal using a Utility Function deciding if it should
accept or refuse the proposal. The idea of this approach is to use this protocol to deal
with conflicts where two or more agents want to delegate a task to the same agent, and
they need to agree upon which one will make use of the task delegation.
 For the evaluation of documents (both TDD and TFD) two different functions
were built to quantify the cost associated to a task execution by a specific agent, and to
measure the utility of a task execution that a different agent has for the agent itself.
Therefore, a Cost Function and a Utility Function were defined, along with a simple
Threshold Function that calculates how much an agent is will to negotiate a given task
execution.

Cost Function.
Cost Function is intended to quantitatively evaluate a function in terms of execution
impact for the production system. In equation (1) is presented the main parameters that
should be taken into account to calculate a value that represents the effort applied to a
task execution.

��
��

+
��

� −
�	�� − �
 ∗ ���

�

	1

For the task execution cost to be calculated, a set of arguments need to be
specified: Sr: required services; Sa: available services; St (serviceMinTime): value that
describes the amount of time an equipment worth to execute a certain task on the shop-
floor; T: task duration.

Utility Function.
Utility Function is basically a quantitative measurement of how useful a task execution
can be, taking into account the differences between the requester ideal task operation
and actually the possible task specification to be executed by the requested agent.

10
�∑ ��� ��

��� � ∗ 0.1 + 10
 	2

If the difference is 0, the utility will be 1, and in other cases, the utility will be
any number between 0 and 1.

Threshold Function.
Equitation (3) is a simple equation which is intended to define a how much an agent
should be willing to negotiate for a task execution with others. In this particular case,
parameter P assumes the value of 10.

� ∗ ������� (3)

4 Experimental Results

The main purpose of this section is to gather all the concepts and ideas described in the
previous sections, and apply them to a very simple case. It aims to provide not only a
holistic overview of the approach, but also to frame all the concepts in a specific con-
text, clarifying the main role of the proposed approach. Also this case study was in-
spired and based on the expertise of the all partners involved on the I-RAMP3, in which
a Welding scenario takes an important role not only for project’s requirements, but also
as a basis for final project’s demonstration purposes.

4.1 Case Study: Sensor Negotiation

Scenario Dynamics.
The first step to be taken is to define the agents that will make part of scenario. As
previously explained, there are two different entities that aim to operate on the shop-
floor level - Resistance Spot Welding Machine and Metrology Station - that implies the
use of two instances of Device Agents, and one Mote that required a representation of
one Sensor & Actuator Agent, with the capability of providing three different types of
measurement at the same time – Temperature, Humidity and Camera.

For a simple and clear explanation of the scenario, Fig. 1 will be used as a
reference. It has the representation of two Device Agents (RSW Machine and Metrology

Station) and one Sensor & Actuator Agent (Mote with three different sensors inte-
grated). Before starting to make use of Fig. 1, an initial interaction between agents need
to be explained. It was previously described that when an agent enters the network (en-
vironment where all the devices can virtually see each other), they needs to broadcast
throughout all the devices its internal information and all the tasks that can be executed.
Therefore, taking into account the entities of the present scenario, when the two Device
and Sensor & Actuator Agents step into the network, they need to generate a document
that describe themselves, and send them to all the devices that make part of the network.
The purpose of sending the SDD to all the network components, is to make them aware
of what the other ones can do, and therefore, giving the possibility to locally make
decisions about which agents are suitable to collaborate with.
 After this registration process on the device network, everything is aligned to
start the task delegation process, where agents create documents (TDDs) where they
can specify on which conditions a task should be executed. Thus, it can be seen from
Fig. 1 that the initial message from the Device Agents is a Task Description Documents
requiring the execution of a specific task from the Sensor and Actuator Agent. This step
corresponds to the Call for Proposal message on the Contract-Net Protocol, where
agents send the ideal required task execution. Consequently and regarding this scenario,
the Mote should be able analyze the two received TDDs, and do two different things in
each case: Update TDD into the TFD; Calculate the cost of the updated task execution.

The first thing is basically to compare and update what was defined in the TDD
with what the Mote can actually execute on the shop-floor (SDD specification). The
second thing is it to make use of the defined Cost Function to estimate the price that a
Device Agent needs to pay for the task execution. This value is a measure used to com-
pare the effort that needs to be applied for different tasks by different devices, and to
see if it worth the use of that equipment or it makes sense to reject that specific task
execution. After those two steps are completed, the Mote device needs to send the TFD
response to the RSW Machine and Metrology Station, along with the cost of task exe-
cution.

For the Device Agents to measure how suitable a task response (TFD) is com-
paring with the task request (TDD), it need to make use of the Utility Function. This
function, as previously explained, measures the distance between the ideal task execu-
tion and what can really be executed on the shop-floor level, and it aims to quantify if
the proposal sent from the Sensor & Actuator Agents is useful or not for the task exe-
cution to be used.

In the case of both Device Agents accept the proposal, the Sensor & Actuator
Agent is responsible to increase the costs of the task execution to see how’s willing to
pay the higher value. This negotiation strategy aims to take the maximum advantage of
the proposal requesters, since in cases of where the demand is higher than supply, the
product prices will increase and maximize its profits. In this case, since we are talking
about collaboration, these prices are not actually to be paid, but just a measure to deter-
mine whose component will make use of the task execution.

Fig. 1. Simple Negotiation Sequence Diagram

Finally, when the task execution cost is higher enough for only one Device
Agent is willing to pay for the execution, a message will be sent informing about the
success of task execution allocation, and it will start to operate in the specified time,
during the specified task duration.

Simulated Scenario.

For full and complete understanding of information exchanged regarding the negotia-
tion process, a simple example will be presented using the previous explained equip-
ment, protocols and information documents. As a basis for this exposure, Table 1

shows the information that was specified regarding the task execution. It can be seen
that task type is Measurement, and it can use three different types of sensors at the same
time: Temperature, Humidity and Camera. From the table, we can see information on
the task level, like ServiceMinTime and NumberServices, and on the sensors level we
can see a set arguments that assume the operation conditions for the Mote device.

In the initial negotiation phase, RSW Machine and Metrology Station should cre-
ate a TDD and send it to the Mote device. In this paper, we will not focus on TDD and
TFD definition, but on the process of reaching an agreement in whom will make use of
the task execution. Therefore, only the differences between TDD and TFD will be con-
sidered, rather than the whole task description. The first equipment wants to make use
of all the three different sensors, and the second one wants to make use of only one
sensor: Camera. From this point, we can assume that RSW Machine TDD should have
the information of the three sensor parameterization, and the Metrology Station should
have only one sensor parameterization.

With the present information, we can start specifying some values for the Cost
Function parameters, to be used by the Sensor & Actuator Agent for each TDD re-
ceived. Considering the RSW Machine, and taking into account equation (1), we can
define Sa = 3, Sr = 3, St = 100 and T = 500. Considering the Metrology Station, we can
define Sa = 3, Sr = 1, St = 100 and T = 20. As can be seen, there are two differences on
the functions arguments. One of them is the number of services required - Metrology
Station only requires one sensor - and task duration - RSW Machine task is required to
be longer than the Metrology Station one. Hence, the cost associated to the required
task from RSW Machine is 1.199 and from Metrology Station is 9.25. The big difference
between costs is due to two major aspects: Number of sensors consumed; Task dura-
tion.

As explained in the previous sections, considering a Mote, it is more costly to
use only one sensor, avoiding others to use the full capabilities of the device, and a
minimum time that makes sense to use the device, for energy consumption reasons.
Regarding the two TFDs that should be defined by the Sensor & Actuator Agents, we
will assume there are two differences comparing with the RSW Machine TDD (two
different task arguments cannot be fulfilled by the mote specifications), and no differ-
ence comparing with the Metrology Station (the task can be executed without re-
strictions).

Therefore, Sensor & Actuator Agent should send the TFDs to the corresponding
entities, and wait for either an acceptance or rejection response. On the Device Agent’s
side, a utility for each TFD should be calculated. To do so, we only need to know the
number of sensor arguments that can be parameterized, since the Utility Function
makes use the differences between what is ideal to be executed, and what can actually
be operated on the shop-floor. Thereby, TFD utility for RSW Machine is 0.909, and for
the Metrology Station is 1. The calculated utility for the RSW Machine is only 0.909
because, as previously depicted, there was not a full matching between the presented
TDD and the proposed TFD.

Table 1. Sensor & Actuator Agent - Measurement Task Description

Type
Service

Min
Time

Number
Services

Measurement 100 3

Parameters

ID Description Arguments Unit

Temperature
Temperature

Sensor

Min -55 ºC

Max 200 ºC

MinError 10 %

MinResponseTime 55 Ms

ID Description Arguments Unit

Humidity
Humidity
Sensor

Min 0 %

Max 100 %

MinError 20 %

MinResponseTime 55 Ms

ID Description Arguments Unit

Camera
Camera
Sensor

maxFrameRate 24 Img/sec

minLatency 100 Ms

MinError 20 %

MinResponseTime 55 Ms

The next phase of the negotiation protocol is the first step of the negotiation

loop, in which Sensor & Actuator Agent iteratively increases the cost of the task exe-
cution to determine which Device Agent is willing to pay the higher price for the task
execution. As explained before, the cost value is just representative and with no influ-
ence. For instance, if a Device Agent accept a task execution with a cost value of 8.5,
anything will change or influence in further operation, since we are dealing with a col-
laborative environment, and not a competitive one. Therefore, the Threshold value that
RSW Machine and Metrology Station are available to pay for a task execution agree-
ment is 9.09 and 10, correspondingly. Whenever the Sensor & Actuator Agent receives
the acceptance messages from the two Device Agents, no agreement is reached, and it
will increase the cost of each function in 1 unit. Hence, in the next iteration, task exe-
cution costs will assume the values of 2.119 and 10.25, and taking into account the
previous thresholds, the Device Agent representing the Metrology Station is not willing
to pay for the task execution, since the new cost exceeds it, and will send a reject mes-
sage to the Sensor & Actuator Agent saying that it is no longer interested in the task
execution. On the other hand, since the new RSW Machine task execution cost does not
exceeds the calculated threshold, it will send an acceptance message to the Mote.

Finally, and after Sensor & Actuator Agent checks that only one Device Agent
is willing to pay the cost associated with the task execution, it will send a Start Task
Operation message informing about the success of the negotiation.

5 Discussion

Throughout the whole paper, new concepts and ideas were explored with the intention
of improving some of the nowadays difficulties in the industry domain. Regardless of
the simple example presented in the section 4, the strategies applied to this context
along with the agent paradigm and well structure communication processes, proved to
be a good and reliable approach. Nevertheless, more industrial scenarios and validation
processes are required and need to be exploited, until this approach reach the necessary
consistency to gain credit among the industrial reality.
 One of the most important advantages of the presented concepts, is undoubt-
edly the decentralized approach, which seems to be verified the fault tolerant property.
This means that in case of sudden equipment fail, the network of equipment will main-
tain its communication and collaboration activities, avoiding stopping the production
system due to component dependency issues.
 Another concept introduced in this paper, is the task driven communication,
in which not only equipment execution on shop-floor level, but also internal pro-
grammed services, are specified in XML-based format, and used to delegate responsi-
bilities of providing certain results and operation according to precise specifications.
This concept allow the automatic reconfiguration of equipment for shop-floor opera-
tion, in which, in some of industrial contexts, is made manually and reveal to be very
costly and ineffective.
 Obviously that when we talk about a complex and ambitious approach like
this, the other side of the coin needs also to be revealed, and therefore discussed and
explored. When we talk about industrial systems, latency is always an issue that needs
to be considered when exploring and developing new concepts to be applied to it. In
this approach, to deal with resource conflict, a negotiation protocol was used. In an
environment where there are dozens of devices communicating with each other, the
Contract-Net protocol with the negotiation loop can represent an undesirable network
overhead.
 The last issue that will be dissected in this section, is the additional computa-
tional resources that this approach involves. As said in previous sections, there are com-
ponents like sensors and actuators that don’t have a high processing and memory capa-
bility, and therefore, cannot be added more complex functionalities and communication
means. Hence, specific set of sensor and actuator information must flow to a central
point, e.g. gateway, and be intelligently encapsulated by more capable devices.
 The next steps towards this specific industrial agent oriented improvement are
related with the use of learning techniques for negotiation improvement and develop-
ment of predictive maintenance models. The first one lies in the threshold learning, in
which the amount effort a device is willing to apply in negotiation can be adapted to
certain devices with very specific shop-floor needs. There’s a possibility of whenever

a conflict occurs, in which a specific device is involved, and due to specific needs, it
would never get a task executed by other device. The second one is a more complex
challenge, due to the fact that data must be correctly analyzed and predictive models
would need to be created for further adaptation as runtime information is becoming
available. This would support the maintenance personal to, firstly, know which part of
a component needs to be maintain, and secondly, to when a sudden fail is probable to
occur. For this latter, Bayesian Networks will be explored since it reveals to be suitable
for this kind of problems, like finding the root cause of a certain problem, and what was
the most successful prescriptive measure for a specific malfunction.

6 Acknowledgements

This work was carried out with the support from the European Commission under the
Seventh Framework Programmer, in the Integrated Project I-RAMP3 (FoF.NMP.2012-
3).

7 References

1. Shen, W., Norrie, D. H., and Barthès, J.-P. A.: Multi-Agent Systems for
Concurrent Intelligent Design and Manufacturing. Taylor & Francies, London
and New (2001)

2. Bellifemine, F., Poggi, A., Rimassa, G.: Developing Multi-agent Systems
with JADE. In : Intelligent Agents VII. Springer-Verlag Berlin Heidelberg
(2001)

3. Shen, W., Maturana, F., Norrie, D. H.: MetaMorph II: an agent-based
architecture for distributed intelligent design and manufacturing. In : Journal of
Intelligent Manufacturing. (2000)

4. Ferreira, P.: An agent-based self-Configuration Methodology for Modular
Assembly Systems. PhD Thesis, University of Nottingham, Nottingham (2001)

5. Parunak, H. V. D., Baker, A. D., Clark, S. J.: The AARIA Agent
Architecture: From Manufacturing Requirements to Agent-Based System
Design Integrated. In : Computer-Aided Engineering. (2001)

6. Wooldridge, M.: An introduction to multiagent systems. 2nd edn. John Wiley
& Sons, Chichester, England (2002)

7. Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F.: XML
1.0 Specification., W3C (2008)

8. Peschl, M., Link, N., Hoffmeister, M., Gonçalves, G., Almeida, F. L. F.:
Designing and implementation of an intelligent manufacturing system. In :
Journal of Indutrial Engineering and Management. (2011)

